Vassiliev invariants for braids on surfaces

نویسندگان

  • Juan González-Meneses
  • Luis Paris
چکیده

We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface. 1 Definitions and statements 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vassiliev Homotopy String Link Invariants

We investigate Vassiliev homotopy invariants of string links, and find that in this particular case, most of the questions left unanswered in [3] can be answered affirmatively. In particular, Vassiliev invariants classify string links up to homotopy, and all Vassiliev homotopy string link invariants come from marked surfaces as in [3], using the same construction that in the case of knots gives...

متن کامل

Vassiliev and Quantum Invariants of Braids

We prove that braid invariants coming from quantum gl(N) separate braids, by recalling that these invariants (properly decomposed) are all Vassiliev invariants, showing that all Vassiliev invariants of braids arise in this way, and reproving that Vassiliev invariants separate braids. We discuss some corollaries of this result and of our method of proof.

متن کامل

Birman’s conjecture for singular braids on closed surfaces

Let M be a closed oriented surface of genus g ≥ 1, let Bn(M) be the braid group of M on n strings, and let SBn(M) be the corresponding singular braid monoid. Our purpose in this paper is to prove that the desingularization map η : SBn(M) → Z[Bn(M)], introduced in the definition of the Vassiliev invariants (for braids on surfaces), is injective. AMS Subject Classification: Primary 20F36; Seconda...

متن کامل

On Finiteness of Vassiliev Invariants and a Proof of the Lin-wang Conjecture via Braiding Polynomials

Using the new approach of braiding sequences we give a proof of the Lin-Wang conjecture, stating that a Vassiliev invariant v of degree k has a value Ov(c(K)k) on a knot K, where c(K) is the crossing number of K and Ov depends on v only. We extend our method to give a quadratic upper bound in k for the crossing number of alternating/positive knots, the values on which suffice to determine uniqu...

متن کامل

Free Groups and Finite Type Invariants of Pure Braids

In this paper finite type invariants (also known as Vassiliev invariants) of pure braids are considered from a group-theoretic point of view. New results include a construction of a universal invariant with integer coefficients based on the Magnus expansion of a free group and a calculation of numbers of independent invariants of each type for all pure braid groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008